首页> 外文OA文献 >Software Defect Association Mining and Defect Correction Effort Prediction
【2h】

Software Defect Association Mining and Defect Correction Effort Prediction

机译:软件缺陷关联挖掘和缺陷校正工作量预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Much current software defect prediction work concentrates on the number of defects remaining in software system. In this paper, we present association rule mining based methods to predict defect associations and defect-correction effort. This is to help developers detect software defects and assist project managers in allocating testing resources more effectively. We applied the proposed methods to the SEL defect data consisting of more than 200 projects over more than 15 years. The results show that for the defect association prediction, the accuracy is very high and the false negative rate is very low. Likewise for the defect-correction effort prediction, the accuracy for both defect isolation effort prediction and defect correction effort prediction are also high. We compared the defect-correction effort prediction method with other types of methods: PART, C4.5, and Na¨ıve Bayes and show that accuracy has been improved by at least 23%. We also evaluated the impact of support and confidence levels on prediction accuracy, false negative rate, false positive rate, and the number of rules. We found that higher support and confidence levels may not result in higher prediction accuracy, and a sufficient number of rules is a precondition for high prediction accuracy.
机译:当前许多软件缺陷预测工作都集中在软件系统中剩余的缺陷数量上。在本文中,我们提出了基于关联规则挖掘的方法来预测缺陷关联和缺陷校正工作。这是为了帮助开发人员检测软件缺陷,并帮助项目经理更有效地分配测试资源。我们将提出的方法应用于SEL缺陷数据,该数据由15年以上的200多个项目组成。结果表明,对于缺陷关联预测,准确度很高,假阴性率很低。同样对于缺陷校正工作量预测,缺陷隔离工作量预测和缺陷校正工作量预测两者的准确性也很高。我们将缺陷校正工作量预测方法与其他类型的方法(PART,C4.5和朴素贝叶斯)进行了比较,结果表明准确性至少提高了23%。我们还评估了支持度和置信度水平对预测准确性,误报率,误报率和规则数量的影响。我们发现较高的支持度和置信度可能不会导致较高的预测准确性,并且足够多的规则是较高预测准确性的前提。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号